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Abstract. The Cahn-Morral System has often been used to model the dy-

namics of phase separation in multi-component alloys on large domains. In

this paper we examine phase separation on small one-dimensional domains

time independently. In particular we use AUTO to create bifurcation dia-

grams of equilibrium solutions for two different nonlinearities and use Matlab

to observe the structure of the material at various points on the diagrams. We

compare the results to determine if using different nonlinearities significantly

affects the behavior of the Cahn-Morral System.
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NUCLEATION IN ALLOYS 1

Figure 1. The processes of nucleation and spinodal decomposi-
tion on two dimensional domains are depicted in these plots. The
left plot is an example of a nucleation pattern and the right plot
demonstrates spinodal decomposition

1. Introduction

Alloys are composite materials which are formed by mixing a number of pure

metals together at a high temperature and then rapidly quenching or cooling the

mixture to form a solid. During the process of quenching, the components undergo

a phase separation in which they begin to form patterns. These pattern formations

can be divided into two classes: nucleation and spinodal decomposition. Qualita-

tively nucleation occurs when the individual components begin to materialize from

the homogeneous mixture as isolated droplets or droplets. Spinodal decomposition

occurs when the components form connected snakelike patterns. This behavior is

modelled mathematically by the Cahn-Morral system.

2. Background and Research Methods

2.1. Cahn-Morral system. The Cahn-Morral system is given by,

(1)
~ut = −∆(ε2∆~u+ f(~u)) on Ω

∂~u

∂ν
=
∂∆~u
∂ν

= 0 on ∂Ω
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where ~u ∈ R3. The energy of the system is modelled by the Van der Waals free

energy functional,

Eε[~u] =
∫

Ω

(
ε2

2
· |∇~u|2 + F (~u)

)
dx

where ~u ∈ R3. The term −f is defined as the derivative of the double-well potential,

F from the free energy functional. The domain Ω ⊂ R = [0, 1], has Neumann

boundary conditions imposed on the edges where F : R3 → R and f : R3 → R3

2.2. Gibbs Simplex. The Gibbs simplex is defined as:

G = {(u, v, w) ∈ R3 : u+ v + w = 1 , u ≥ 0 , v ≥ 0 , w ≥ 0}.

where ~u ∈ G ∀ t. The Gibbs simplex also represents the set of all possible states

or average mass concentrations of the ternary alloy, which follows from the con-

servation of mass. G can be divided into regions corresponding to nucleation and

spinodal decomposition, which are determined through linearization analysis.

Given a state (ū, v̄, w̄) ∈ G, the stability of that particular state is given by

computing the eigenvalues of Jf (ū, v̄, w̄), where Jf is the Jacobian of f(u) [4]. The

state (ū, v̄, w̄) is in the nucleation region if Jf has no positive eigenvalues. Otherwise

it lies in the spinodal region [2]. These regions can be depicted graphically with

the Gibbs Triangle, where each color represents a different region.

2.3. The nonlinearities. In our research we used two nonlinearities; a quadratic

nonlinearity:

F (u, v, w) =
u2v2 + (u2 + v2)(w2)

4

and a logarithmic nonlinearity:

F (u, v, w) = 3.5(uv + uw + vw) + u lnu+ v ln v + w lnw.

The nonlinearities were chosen so that they were triple well potentials and sym-

metric. Symmetric means that each component contributes to the nonlinearity in

the same way, making investigations simpler.
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Figure 2. The Gibbs triangle for the quadratic nonlinearity is
shown on the left, and the triangle for the logarithmic nonlinearity
is depicted on the right

Both of the nonlinearities have been investigated previously in both the one and

two dimensional cases [3],[4],[2]. However, most of the previous research was done

with time variation. Our research differs in that we are looking at solutions at

one moment in time and comparing results from different nonlinearities. Also in

our case we are using much smaller domains so that we can study the behavior of

individual droplets. This differs from past research which dealt with studying the

behaviour of groups of droplets on much larger domains.

3. Results and Discussion

3.1. Gibbs Triangle. For each of our nonlinearities we created Matlab code which

shows which regions on the Gibbs simplex have zero, one or two positive eigenvalues.

In the pictures below the Gibbs simplex is projected onto the plane.

The red area represents the nucleation region where there are no positive eigen-

values. The light blue and dark blue represent the regions where there are one

and two positive eigenvalues respectively, these two areas are considered part of the

spinodal region.

3.2. Path following. Our ultimate goal in path following was to trace paths in

the parameter space of the nucleation region. However, the nontrivial branches

of equilibria in the nucleation region are not connected to the trivial branch. To

reach the non-trivial nucleation branches we had to begin in the spinodal region.
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Figure 3. This figure displays the bifurcation diagrams for the λ
runs along the second primary branch for both nonlinearities. The
diagram for the quadratic nonlinearity is depicted on the left and
the logarithmic nonlinearity is shown on the right
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Figure 4. This figure compares the alpha runs from both nonlin-
earities; the plot on the left is from the quadratic nonlinearity and
the plot on the right is from the logarithmic nonlinearity
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Figure 5. This figure compares two successful β runs from inside
the nucleation region for both nonlinearities; the plot on the left
depicts the β run for the quadratic nonlinearity where λ = 8000,
α ≈ 0.09344 and the plot on the right shows the β run for the
logarithmic nonlinearity with λ = 450 and α ≈ 0.121.
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Figure 6. This figure depicts the change in droplet formation
for the quadratic nonlinearity, as λ increases along the secondary
branch of figure 3.

This is due to the fact that since the nucleation region is stable, it isn’t possible to

branch out. First we varied λ = 1/ε2. To get onto the second primary branch in

the spinodal region. After following the second primary branch and its bifurcations

we attempted to follow in α = (ū + v̄)/2 back into the nucleation region. Finally

we varied β = (ū− v̄)/2 in the nucleation region.

We were interested in the second primary branch since symmetry of the solutions

along that branch ensured that we could get centralized bubble formations. The

primary branches occur at the points λ = (nπ)2/µ where n ∈ N and µ is the

positive eigenvalue of Jf (u). The goal was to follow this branch to a sufficiently

large value of λ so that when that value is fixed and α is varied back from the

primary branch and / or any secondary branch that it will become small enough

to reach the nucleation region.
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Figure 7. This figure depicts the change in droplet formation for
the logarithmic nonlinearity, as λ increases along the secondary
branch of figure 3.

As shown in figure 3, the primary branch for the quadratic nonlinearity was fol-

lowed out to λ ≈ 8000 where only one secondary branch was detected by AUTO.

To reach the nucleation region the λ value was fixed at 8000, where the α run origi-

nating from the secondary branch reached sufficiently small values. Unfortunately,

the α run originating from the primary branch was unable to reach a small enough

value to enter the nucleation region. The α run which did enter the nucleation

region produced several points from which a β varying simulation could be run; it

turned out that all but one of these points resulted in spurious runs. The plot on the

left in Figure 5 displays the bifurcation diagram produced from the aforementioned

β run.

For the logarithmic nonlinearity, the first nontrivial branch was easy to find

and there were also several bifurcations originating from it. However, the droplet
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Figure 8. This figure depicts the droplet formation occurring at
the label from which the β run for the quadratic nonlinearity de-
picted in figure 5 originates.

diagrams were not very interesting, because the average concentration of the u and

v components were always exactly the same. Changing β from 0 to 0.001 yielded

double and single edge droplets, since the ū and v̄ concentrations were different.

The second branch was much more difficult to get onto than the first branch.

We could not get onto the second branch with either β = 0 or β = 0.001. Therefore

we decided to try forcing the symmetry by setting v(x) = u(1− x), which reduced

the complexity of the problem by eliminating a component from the vector ~u. This

allowed us to add more modes to the discrete cosine transform in our spectral

code without using significantly more computing power, which in theory should

have increased the accuracy of our results. Unfortunately when using the new

symmetric code the second branch still did not appear.
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Figure 9. This figure depicts the droplet formation occurring at
the label from which the β run for the logarithmic nonlinearity,
depicted in figure 5 originates.

We then changed the step size from 1×10−8 to 1×10−4 and the symmetric code

was able to go onto the second branch. To determine if the symmetric code played

any part in the transition to the second branch we tried using our original code

again with the new step size. Once again we successfully moved onto the second

branch. This probably worked because now AUTO was getting far enough onto

the second branch in the first step that it would not accidentally converge to the

original branch on the second step.

Next we proceeded to start following the second branch and all of its bifurcations.

We found many other branches, but the shape of our diagram appeared to indicate

that we were missing a pitchfork bifurcation. At the time we were using the non-

symmetric code with β = 0.001 which could have caused the branch that seemed

to be missing to be slightly separated from the other branches. We decided to go
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Figure 10. This figure depicts the change in droplet formation for
the quadratic nonlinearity, as β increases along the path in figure
5.

back to using the code with β = 0, which allowed us to find not only that branch,

but several other branches out to λ = 500.

Finally we started trying to follow in α to get into the nucleation region. Be-

ginning with λ = 450 we were able to follow back to α = 0.121 from the branch

with the lowest L2 norm. This was in the nucleation region. We tried to trace back

into the nucleation region at λ = 450 from a few of the other branches, but AUTO

either started jumping between branches or simply intersected another branch and

started moving away from the nucleation region.

On our one successful run into the nucleation region we obtained α = 0.121 at

four different points. We tried to vary in β starting at each point. For the first

three we only received end points from AUTO. We were able to follow the fourth
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Figure 11. This figure depicts the change in droplet formation for
the logarithmic nonlinearity, as β increases along the path depicted
in figure 5.

point with an L2 norm of 0.1135 and β = −0.06265 briefly before AUTO started

finding constant bifurcation points.

Figures 3, 4 and 5 compare and contrast the bifurcation diagrams resulting from

the λ, α and β runs respectively, for both nonlinearities. Interestingly, the diagrams

depicting the α runs for both non-linearities are very different while the diagrams

produced from the β runs are almost identical. This suggests, at least qualitatively,

that when in the spinodal region, the two nonlinearities behave very differently but

once inside the nucleation region they behave more similarly. If similar results are

obtained from future research then this would imply that from a materials science

perspective, that the behavior of the Cahn-Morral system is not affected by the

change in nonlinearity.
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4. Future Work

We would like to successfully trace α back into the nucleation region from sev-

eral branches at the same λ value and compare droplet formations. We hope to

eventually find which droplet formations are possible at each value of λ for each

nonlinearity. Our third partner James O’Beirne will be investigating a sixth de-

gree polynomial nonlinearity and comparing the results with our investigations.

Eventually the research should be expanded to two and three dimensions to see

if results vary significantly. Also more than three components will be used. Both

of these extensions, though requiring more computing power, will make the model

considerably more reliable. We hope that future research will gather enough data

to either disprove or support the assertion presented in this paper that the once

inside the nucleation region, the system behaves identically, despite having different

nonlinearities. Perhaps even a rigorous mathematical argument that explains the

impact of changing nonlinearities.
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